Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.281
Filtrar
1.
Methods Mol Biol ; 2788: 375-395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656526

RESUMEN

Geomagnetic field (GMF) protects living organisms on the Earth from the radiation coming from space along with other environmental factors during evolution, and it has affected the growth and development of plants. Many researchers have always been interested in investigating these effects in different aspects. In this chapter, we focus on the methods of using different types of magnetic fields (MFs) to investigate the dimensions of their biological effects on plants. The aim is to increase seed germination, growth characters, and yield of plants using the following methods: (1) Using MFs lower than GMF to study effects of GMF on the growth and yield of plants. (2) Using reversed magnetic fields (RMFs) lower than GMF to study its effects on the growth and development of plants during evolution. (3) Using static magnetic fields (SMFs) higher than GMF and reversed SMFs to study effects of the south (S) and north (N) magnetic pole on plants. (4) Using electromagnetic fields (EMFs) to increase and accelerate seed germination, growth, and yield of plants, and establish the status of plants against other environmental stresses. (5) Using magnetized water (MW) to improve plant seed germination, growth, and yield. (6) Using high gradient magnetic field (HGMF) to study magneto-tropism in plants. In this chapter, we recommend application of various types of MFs to study their biological effects on plants to improve crop production.


Asunto(s)
Germinación , Campos Magnéticos , Desarrollo de la Planta , Semillas , Germinación/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Desarrollo de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Plantas/metabolismo
2.
Plant Sci ; 343: 112085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588983

RESUMEN

Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.


Asunto(s)
Proteínas de Plantas , Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Péptidos , Fosfotransferasas/metabolismo , Desarrollo de la Planta
3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 971-987, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658142

RESUMEN

The heterogeneity of gene expression in plant cells plays a crucial role in determining the functional differences among tissues. Recent advancements in spatial transcriptome (ST) technology have significantly contributed to the study of specific biological questions in plants. This technology has been successfully applied to examine cell development, identification, and stress resistance. This review aims to explore the application of ST technology in plants by reviewing three aspects: the development of ST technology, its current application in plants, and future research directions. The review provides a systematic description of the development process of ST technology, with a focus on analyzing its progress in studying plant cell growth and differentiation, plant cell identification, and stress resistance. In addition, the challenges faced by ST technology in plant applications are summarized, along with proposed future directions for plant research, including the advantages of combining other omics technologies with ST technology to tackle scientific challenges in the field of plants.


Asunto(s)
Perfilación de la Expresión Génica , Plantas , Transcriptoma , Plantas/genética , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Desarrollo de la Planta/genética , Células Vegetales/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612923

RESUMEN

Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.


Asunto(s)
Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Aminoácidos , Péptidos , Estrés Fisiológico
5.
Plant Signal Behav ; 19(1): 2341506, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38607960

RESUMEN

Sugar signaling forms the basis of metabolic activities crucial for an organism to perform essential life activities. In plants, sugars like glucose, mediate a wide range of physiological responses ranging from seed germination to cell senescence. This has led to the elucidation of cell signaling pathways involving glucose and its counterparts and the mechanism of how these sugars take control over major hormonal pathways such as auxin, ethylene, abscisic acid and cytokinin in Arabidopsis. Plants use HXK1(Hexokinase) as a glucose sensor to modulate changes in photosynthetic gene expression in response to high glucose levels. Other proteins such as SIZ1, a major SUMO E3 ligase have recently been implicated in controlling sugar responses via transcriptional and translational regulation of a wide array of sugar metabolic genes. Here, we show that these two genes work antagonistically and are epistatic in controlling responsiveness toward high glucose conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucosa , Ligasas/genética , Desarrollo de la Planta , Ubiquitina-Proteína Ligasas/genética
6.
Sci Rep ; 14(1): 8773, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627532

RESUMEN

Previous studies have primarily focused on the influence of temperature and precipitation on phenology. It is unclear if the easily ignored climate factors with drivers of vegetation growth can effect on vegetation phenology. In this research, we conducted an analysis of the start (SOS) and end (EOS) of the growing seasons in the northern region of China above 30°N from 1982 to 2014, focusing on two-season vegetation phenology. We examined the response of vegetation phenology of different vegetation types to preseason climatic factors, including relative humidity (RH), shortwave radiation (SR), maximum temperature (Tmax), and minimum temperature (Tmin). Our findings reveal that the optimal preseason influencing vegetation phenology length fell within the range of 0-60 days in most areas. Specifically, SOS exhibited a significant negative correlation with Tmax and Tmin in 44.15% and 42.25% of the areas, respectively, while EOS displayed a significant negative correlation with SR in 49.03% of the areas. Additionally, we identified that RH emerged as the dominant climatic factor influencing the phenology of savanna (SA), whereas temperature strongly controlled the SOS of deciduous needleleaf forest (DNF) and deciduous broadleaf forest (DBF). Meanwhile, the EOS of DNF was primarily influenced by Tmax. In conclusion, this study provides valuable insights into how various vegetation types adapt to climate change, offering a scientific basis for implementing effective vegetation adaptation measures.


Asunto(s)
Bosques , Desarrollo de la Planta , China , Cambio Climático , Estaciones del Año , Temperatura , Ecosistema
7.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629612

RESUMEN

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Asunto(s)
Miosinas , Células Vegetales , Miosinas/metabolismo , Células Vegetales/metabolismo , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crecimiento & desarrollo , Desarrollo de la Planta/fisiología
8.
Curr Biol ; 34(8): R326-R328, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653202

RESUMEN

A new study shows that TOO MANY LATERALS/WIP6 acts as a key regulator of vein specification and development across C3 and C4 photosynthetic grasses.


Asunto(s)
Fotosíntesis , Poaceae/crecimiento & desarrollo , Poaceae/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desarrollo de la Planta
9.
Plant Signal Behav ; 19(1): 2345984, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38654490

RESUMEN

In this paper, we propose a crucial supplement to the framework of plant cognition, namely extending cognition. We argue that plants and other organisms with an open-ended body plan actively extend their cognition when growing tissues or organs. Their cognition expands with their body expansion. After considering the defining features of extending cognition, we present a model where growth, along with aspects of plant physiology (e.g. biochemical exudates), as well as the "negative extension" of growing away from obstacles or stressful environments, are the building blocks for a more refined understanding of plant cognition. We conclude by outlining the general implications of the theory of extending cognition and indicating directions for future research.


Asunto(s)
Cognición , Cognición/fisiología , Plantas/metabolismo , Modelos Biológicos , Desarrollo de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas
10.
Methods Mol Biol ; 2795: 161-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38594537

RESUMEN

The PHYTOCHROME INTERACTING FACTORs (PIFs) play pivotal roles in regulating thermo- and photo-morphogenesis in Arabidopsis. One of the main hubs in thermomorphogenesis is PIF4, which regulates plant development under high ambient temperature along with other PIFs. PIF4 enhances its own transcription and PIF4 protein is stabilized under high ambient temperature. However, the mechanisms of thermo-stabilization of PIF4 are less understood. Recently, it was shown that SUPPRESSOR OF PHYA-105 1 (SPA1) can function as a serine/threonine kinase to phosphorylate PIF4 in vitro, and the phosphorylated form of PIF4 is more stable under high ambient temperature conditions. In this chapter, we describe the in vitro kinase assay of PIF4 by SPA1. In principle, this protocol can be applied for other putative substrates and kinases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilación , Arabidopsis/metabolismo , Fitocromo/metabolismo , Desarrollo de la Planta , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Ciclo Celular/metabolismo
11.
Ecotoxicol Environ Saf ; 275: 116275, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564858

RESUMEN

Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 µM) and Zn (800 µM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 µM + 200 µM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 µM + 800 µM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.


Asunto(s)
Iris (Planta) , Metales Pesados , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Zinc/toxicidad , Desarrollo de la Planta , Contaminantes del Suelo/toxicidad
12.
J Agric Food Chem ; 72(15): 8365-8371, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588402

RESUMEN

Plant growth regulators (PGRs) play an important role in alleviating the detrimental effects of biotic and abiotic stress and improving crop yield and quality. As a novel PGR from Streptomyces registered in 2021, guvermectin (GV) has the potential to improve plant yield and defense, making its application in agriculture a subject of interest. Here, we describe the discovery process, functional activities, agricultural applications, toxicity, environmental safety, and biosynthetic mechanism of GV. This Perspective provides a guide for the development of novel PGRs from microorganisms.


Asunto(s)
Adenosina/análogos & derivados , Reguladores del Crecimiento de las Plantas , Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Fisiológico , Agricultura , Desarrollo de la Planta
13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612787

RESUMEN

Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant processes and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant protection against adverse conditions by enhancing tolerance, often interacting with other molecules to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate S nutrition and particularly the involvement of phytohormones in this process remains elusive. Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Additionally, S availability regulates the growth and development of plants through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely, many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SL). This review provides a summary of the research concerning the impact of phytohormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although numerous molecular details are yet to be fully understood, several core signaling components have been identified at the crossroads of S and major phytohormonal pathways.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Sulfatos , Desarrollo de la Planta , Ácido Abscísico , Citocininas
15.
Plant Sci ; 343: 112073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522657

RESUMEN

Sustainable agriculture based on the use of soil-beneficial microbes such as plant growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCA) is gaining great consideration to reduce the use of agrochemicals for crop production. With this aim, in this study, a total of 78 actinobacteria were isolated from the rhizosphere and endosphere of soybean roots. Based on in vitro compatibility with Bradyrhizobium japonicum, the ability to produce phytohormones, siderophores, exo-enzymes, antifungal compounds and phosphate solubilization (PGPR traits), two endophytic strains, named N2A and N9, were selected to evaluate their effects on plant growth and development at greenhouse and field conditions. Greenhouse trials showed significantly promoted seedling emergence compared to control and the conventional fungicide treatment. Analysis of growth and development associated parameters at reproductive stages and maturity at greenhouse, but also and most importantly, in field experiments showed significant improvements. Plant biomass, node number, pod number, and consequently yield, were higher in plants previously treated with N2A and co-inoculated with B. japonicum compared to the conventional seed treatment. Furthermore, a significant increase in health status and vigor was observed for seeds harvested from the N2A-treated plants in relation to seeds obtained from the conventional treatment. Thus, we demonstrated that Streptomyces sp. N2A can replace traditional chemical fungicides to protect the seed during germination, allowing good implantation, but also, stimulating the growth and development of soybean crop increasing yield and seed quality at field conditions. Altogether, this supports the potential use of Streptomyces N2A as a PGPR for soybean crop production more efficiently and sustainably.


Asunto(s)
Soja , Streptomyces , Reguladores del Crecimiento de las Plantas , Desarrollo de la Planta , Semillas/microbiología
16.
Plant Sci ; 343: 112077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552846

RESUMEN

Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transducción de Señal , Hipocótilo , Desarrollo de la Planta , Regulación de la Expresión Génica de las Plantas , Rayos Ultravioleta
17.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502356

RESUMEN

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Asunto(s)
Lactoilglutatión Liasa , Metales Pesados , Piruvaldehído/metabolismo , Plantas/metabolismo , Lactoilglutatión Liasa/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Desarrollo de la Planta , Estrés Fisiológico/fisiología
18.
Nat Commun ; 15(1): 2674, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531864

RESUMEN

Plants exhibit reproducible timing of developmental events at multiple scales, from switches in cell identity to maturation of the whole plant. Control of developmental timing likely evolved for similar reasons that humans invented clocks: to coordinate events. However, whereas clocks are designed to run independently of conditions, plant developmental timing is strongly dependent on growth and environment. Using simplified models to convey key concepts, we review how growth-dependent and inherent timing mechanisms interact with the environment to control cyclical and progressive developmental transitions in plants.


Asunto(s)
Desarrollo de la Planta , Plantas
19.
Plant Sci ; 343: 112062, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461862

RESUMEN

Rice is a crucial food for humans due to its high nutritional value. Phytosterols, essential components of the plant membrane lipid bilayer, play a vital role in plant growth and contribute significantly to lipid-lowering, antitumor, and immunomodulation processes. In this study, SCY1-like protein kinases 2 (SCYL2) was found to be closely related to the accumulation of phytosterols. The levels of campesterol, stigmasterol, and ß-sitosterol significantly increased in transgenic rice seeds, husks, and leaves, whereas there was a considerable reduction in scyl2 plants. Subsequent investigations revealed the crucial role of SCYL2 in plant development. Mutations in this gene led to stunted plant growth while overexpressing OsSCYL2 in Arabidopsis and rice resulted in larger leaves, taller plants, and accelerated development. When subjected to salt stress, Arabidopsis plants overexpressed OsSCYL2 showed significantly higher germination rates than wild-type plants. Similarly, transgenic rice seedlings displayed better growth than both ZH11 and mutant plants, exhibiting lower malondialdehyde (MDA) content and higher peroxidase (POD), and catalase (CAT) activities. Conversely, scyl2 plants exhibited more yellow leaves or even death. These findings suggested that OsSCYL2 proteins might be involved in phytosterols synthesis and play an important role during plant growth and development. This study provides a theoretical basis for developing functional rice.


Asunto(s)
Arabidopsis , Oryza , Fitosteroles , Humanos , Oryza/metabolismo , Arabidopsis/metabolismo , Estrés Fisiológico , Estrés Salino , Desarrollo de la Planta , Fitosteroles/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Biomolecules ; 14(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540739

RESUMEN

ICT1 is an Arabidopsis thaliana line that overexpresses the gene encoding the S30 ribosomal subunit, leading to tolerance to exogenous indole-3-carbinol. Indole-3-carbinol (I3C) is a protective chemical formed as a breakdown of I3M in cruciferous vegetables. The overexpression of S30 in ICT1 results in transcriptional changes that prime the plant for the I3C, or biotic insult. Emerging evidence suggests that ribosomal proteins play important extra-ribosomal roles in various biochemical and developmental processes, such as transcription and stress resistance. In an attempt to elucidate the mechanism leading to I3C and stress resistance in ICT1, and using a multi-pronged approach employing transcriptomics, metabolomics, phenomics, and physiological studies, we show that overexpression of S30 leads to specific transcriptional alterations, which lead to both changes in metabolites connected to biotic and oxidative stress tolerance and, surprisingly, to photomorphogenesis.


Asunto(s)
Arabidopsis , Proteínas Ribosómicas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estrés Oxidativo , Desarrollo de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...